Skip to Content
MilliporeSigma
All Photos(1)

Documents

638102

Sigma-Aldrich

4,4′-Bis(triethoxysilyl)-1,1′-biphenyl

≥90% (VPCC)

Synonym(s):

4,4′-Bis(triethoxysilyl)biphenyl

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[-C6H4Si(OC2H5)3]2
CAS Number:
Molecular Weight:
478.73
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.22

Quality Level

assay

≥90% (VPCC)

bp

203-206 °C/0.3 mmHg (lit.)

density

1.047 g/mL at 25 °C (lit.)

SMILES string

CCO[Si](OCC)(OCC)c1ccc(cc1)-c2ccc(cc2)[Si](OCC)(OCC)OCC

InChI

1S/C24H38O6Si2/c1-7-25-31(26-8-2,27-9-3)23-17-13-21(14-18-23)22-15-19-24(20-16-22)32(28-10-4,29-11-5)30-12-6/h13-20H,7-12H2,1-6H3

InChI key

KENDGHJJHKCUNB-UHFFFAOYSA-N

Related Categories

Application

4,4′-Bis(triethoxysilyl)-1,1′-biphenyl (BTESB) can be used as an indicator to determine the chirality of helical silica nanotubes.

BTESB can also be utilized as a precursor to prepare:
  • Helical 4, 4′-biphenylene-silica nanotubes and nanoribbons using 3-aminopropyltrimethoxysilane as a co-structure-directing agent.
  • Biphenyl-bridged alkoxysilane-based crosslinked polyalkoxysilane by condensation with linear aliphatic diols.
  • Biphenylene-bridged silsesquioxane thin films by the sol-gel method.

A silicon-based nucleophile shown to be reactive in Pd-catalyzed cross-coupling reactions.

hcodes

Hazard Classifications

Aquatic Chronic 4

Storage Class

10 - Combustible liquids

wgk_germany

WGK 3

flash_point_f

230.0 °F - closed cup

flash_point_c

> 110 °C - closed cup

ppe

Eyeshields, Gloves, multi-purpose combination respirator cartridge (US)


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A chirality indicator for the walls and the surfaces of silica nanotubes
Hou F-W, et al.
Chinese Chemical Letters = Zhongguo Hua Xue Kuai Bao, 24(8), 770-772 (2013)
Chimie douce route to novel acoustic waveguides based on biphenylene-bridged silsesquioxanes
Masse P, et al.
Journal of Materials Chemistry, 21(38), 14581-14586 (2011)
Lorenzo Abate et al.
Polymers, 11(9) (2019-09-12)
Two series of novel dumbbell-shaped polyhedral oligomeric silsesquioxanes (POSSs), fully functionalized with phenyl groups at the corner of the silicon cages, were used to prepare polystyrene (PS) nanocomposites through the method of in situ polymerization. The percentage of the molecular
Yi Li et al.
Nanotechnology, 22(13), 135605-135605 (2011-02-24)
An anionic gelator, D-C12ValC10COONa, derived from D-valine can cause physical gels in water and organic solvents. Helical 4,4(')-biphenylene-silica nanotubes and nanoribbons were prepared using it with 3-aminopropyltrimethoxysilane as a co-structure-directing agent and 4,4(')-bis(triethoxysilyl)-1,1(')-biphenyl (BTESB) as precursor. It was found that
Denmark, S. E.; Ober, M. H.
Aldrichimica Acta, 36, 75-75 (2003)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service