Skip to Content
Merck
All Photos(5)

Documents

222356

Sigma-Aldrich

Lithium borohydride

greener alternative

≥90%

Synonym(s):

Lithium boron hydride, Lithium hydroborate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
LiBH4
CAS Number:
Molecular Weight:
21.78
EC Number:
MDL number:
UNSPSC Code:
26111700
PubChem Substance ID:

Quality Level

Assay

≥90%

form

solid

reaction suitability

reagent type: reductant

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

mp

275 °C (dec.)

density

0.666 g/mL at 25 °C (lit.)

greener alternative category

SMILES string

[Li+].[BH4-]

InChI

1S/BH4.Li/h1H4;/q-1;+1

InChI key

UUKMSDRCXNLYOO-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Lithium borohydride, a white solid, may be prepared from the exchange reaction of LiCl and sodium borohydride in isopropylamine. The orthorhombic crystal structure converts to tetragonal at 108oC and eventually melting at 278oC. Infrared and Raman spectral studies at 80oC have been reported in a study.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

Versatile reducing agent for aldehydes, ketones, acid chlorides, lactones, epoxides, and esters. Applied in the lithiation of 2H-WS2 giving high yields of exfoliated WS2, and opening the way to new intercalation compounds and nanocomposites. Lithium borohydride is used as hydrogen storage system. It regenerates hydrogen at 320-380oC at 10atm (H2 pressure).

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Oral - Eye Dam. 1 - Skin Corr. 1B - Water-react 1

Storage Class Code

4.3 - Hazardous materials, which set free flammable gases upon contact with water

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 6

1 of 6

Sodium borohydride purum p.a., ≥96% (gas-volumetric)

Sigma-Aldrich

71320

Sodium borohydride

Lithium iodide AnhydroBeads™, −10 mesh, 99.999% trace metals basis

Sigma-Aldrich

450952

Lithium iodide

Sodium borohydride powder, ≥98.0%

Sigma-Aldrich

452882

Sodium borohydride

Lithium hydride powder, −30 mesh, ≥95%

Sigma-Aldrich

201049

Lithium hydride

Tsai, H-L. et al.
Chemistry of Materials, 9, 879-879 (1997)
Fieser, M.
Reagents for Organic Synthesis, 14, 191-191 (1989)
Low temperature infrared and raman spectra of lithium borohydride.
Harvey KB and McQuaker NR
Canadian Journal of Chemistry, 49(21), 3282-3286 (1971)
Mita Dasog et al.
Chemical communications (Cambridge, England), 47(30), 8569-8571 (2011-06-28)
In the presence of large excesses of borohydride salts, gold monolayer protected-clusters can be grown to larger sizes simply by controlling the amount of reducing agent added to smaller clusters. In addition, gold monolayer clusters can be used as catalysts
G Váradi et al.
International journal of peptide and protein research, 43(1), 29-30 (1994-01-01)
For solid-phase peptide synthesis, 2,4-dimethoxy-4'-hydroxbenzhydrol linker was prepared via lithium borohydride reduction of 2,4-dimethoxy-4'-hydroxybenozophenone. The potassium salt of the linker was coupled to chloromethylpolystyrene. This method proved to be better than use of the cesium salt. This new synthesis gave

Articles

An article about metal borohydrides as hydrogen storage materials

Research and development of solid-state lithium fast-ion conductors is crucial because they can be potentially used as solid electrolytes in all-solid-state batteries, which may solve the safety and energy-density related issues of conventional lithium-ion batteries that use liquid (farmable organic) electrolytes.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service