Skip to Content
MilliporeSigma
  • Enhanced toxicity of 'bulk' titanium dioxide compared to 'fresh' and 'aged' nano-TiO2 in marine mussels (Mytilus galloprovincialis).

Enhanced toxicity of 'bulk' titanium dioxide compared to 'fresh' and 'aged' nano-TiO2 in marine mussels (Mytilus galloprovincialis).

Nanotoxicology (2013-05-24)
Alessia D'Agata, Salvatore Fasulo, Lorna J Dallas, Andrew S Fisher, Maria Maisano, James W Readman, Awadhesh N Jha
ABSTRACT

Marine bivalves (Mytilus galloprovincialis) were exposed to titanium dioxide (10 mg L(-1)) either as engineered nanoparticles (nTiO2; fresh, or aged under simulated sunlight for 7 days) or the bulk equivalent. Inductively coupled plasma-optical emission spectrometry analyses of mussel tissues showed higher Ti accumulation (>10-fold) in the digestive gland compared to gills. Nano-sized TiO2 showed greater accumulation than bulk, irrespective of ageing, particularly in digestive gland (>sixfold higher). Despite this, transcriptional expression of metallothionein genes, histology and histochemical analysis suggested that the bulk material was more toxic. Haemocytes showed significantly enhanced DNA damage, determined by the modified comet assay, for all treatments compared to the control, but no significant differences between the treatments. Our integrated study suggests that for this ecologically relevant organism photocatalytic ageing of nTiO2 does not significantly alter toxicity, and that bulk TiO2 may be less ecotoxicologically inert than previously assumed.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, <001>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, nanowires, diam. × L ~10 nm × 10 μm
Sigma-Aldrich
Titanium(IV) oxide, ReagentPlus®, ≥99%
Sigma-Aldrich
Titanium(IV) oxide, nanowires, diam. × L ~100 nm × 10 μm
Sigma-Aldrich
Titanium(IV) oxide, contains 1% Mn as dopant, nanopowder, <100 nm particle size (BET), ≥97%
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, puriss., meets analytical specification of Ph. Eur., BP, USP, 99-100.5%
Sigma-Aldrich
Titanium(IV) oxide, JIS special grade, ≥99.0%
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis