- Group A streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate immunity.
Group A streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate immunity.
A relative lack of neutrophils around Streptococcus pyogenes is observed in streptococcal toxic shock syndrome (STSS). Because the bacteria spread rapidly into various organs in STSS, we speculated that S. pyogenes is equipped with molecules to evade the host innate immune system. Complement C3b opsonizes the pathogen to facilitate phagocytosis, and a complex of C3b converts C5 into anaphylatoxin. Because we found that C3 (C3b) is degraded in sera from patients with STSS, we investigated the mechanism of C3 (C3b) degradation by S. pyogenes. We incubated human C3b or serum with recombinant SpeB (rSpeB), a wild-type S. pyogenes strain isolated from an STSS patient or its isogenic DeltaspeB mutant and examined the supernatant by Western blotting with anti-human C3b. Western blot and Biacore analyses revealed that rSpeB and wild-type S. pyogenes rapidly degrade C3b. Additionally, C3 (C3b) was not detected in sera collected from infected areas of STSS patients. Furthermore, the survival rate in human blood and in mice was lower for the DeltaspeB mutant than the wild-type strain. Histopathological observations demonstrated that neutrophils were recruited to and phagocytosed the DeltaspeB mutant, whereas with the wild-type strain, few neutrophils migrated to the site of infection, and the bacteria spread along the fascia. We observed the degradation of C3 (C3b) in sera from STSS patients and the degradation of C3 (C3b) by rSpeB. This suggests that SpeB contributes to the escape of S. pyogenes from phagocytosis at the site of initial infection, allowing it to invade host tissues during severe infections.