- Influence of the permeation enhancers 1-alkyl-2-pyrrolidones on permeant partitioning into the stratum corneum.
Influence of the permeation enhancers 1-alkyl-2-pyrrolidones on permeant partitioning into the stratum corneum.
In a previous study, the enhancing effects of a series of 1-alkyl-2-pyrrolidones (APs; 1-ethyl, 1-butyl, 1-hexyl, and 1-octyl-2-pyrrolidone) on the transport of steroidal permeants across hairless mouse skin were investigated via a parallel pathway skin model. Isoenhancement concentration conditions were deduced under which different APs induce essentially the same transport enhancement for the lipoidal pathway of the stratum corneum (s.c.). As a continuing effort to understand the mechanism of action of permeation enhancers, the influence of the APs on permeant partitioning into hairless mouse s.c. was investigated under the isoenhancement concentration conditions using beta-estradiol (E2 beta) as the model permeant. The amount of E2 beta uptake into s.c. was found to be essentially the same for all the APs under these isoenhancement conditions. This result suggests that inducing a higher partitioning tendency for E2 beta into the lipoidal pathway of hairless mouse s.c. is a principal mechanism of action of the APs in enhancing transdermal transport. The uptake of the APs into s.c. lipoidal domains was also determined, and the results show only a modest (approximately 2-fold) increase in the uptake of the APs in going from 1-ethyl-to 1-octyl-2-pyrrolidone under isoenhancement conditions. This indicates the potency of the APs as permeation enhancers is only very modestly dependent upon the alkyl chain length in this chain length region when compared at concentrations in the microenvironment where the action occurs in the lipid domains.