- Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography-mass spectrometry for the determination of volatile compounds in cherry wines.
Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography-mass spectrometry for the determination of volatile compounds in cherry wines.
A simple, rapid and solvent-free multi-residue method has been developed and applied to confirm and quantify a series of volatile compounds in five cherry wines by gas chromatography coupled with mass spectrometry (GC-MS). Four parameters (e.g., coating material of fiber, temperature and time of extraction, and addition of sodium chloride in the solution) of headspace solid-phase micro-extraction (HS-SPME) were optimized, resulting in the best extraction condition including 50/30 μm DVB/CAR/PDMS fiber, 45 min and 50 °C of SPME, and 2g of sodium chloride addition in the wine during the extraction. The SPME had LODs and LOQs ranging from 0.03 to 7.27 μg L(-1) and 0.10 to 24.24 μg L(-1) for analytic compounds, respectively. Repeatability and reproducibility values were all below 19.8%, with mean values of 12.7% and 10.5%, respectively. Regression coefficients (R(2)) of detective linearity of the standard curves was higher than 0.9852. Moreover, relative recoveries of analytical targets were achieved in a range of 60.7-125.6% with good relative standard deviation values (≤20.6%). In addition, a principal component analysis (PCA) was used to analyze the aroma profiles of the wines, which indicated that five samples were distinctly divided into two groups based on their different geographical origins and volatile compounds.