- MSG intake and preference in mice are influenced by prior testing experience.
MSG intake and preference in mice are influenced by prior testing experience.
Monosodium glutamate (MSG), the prototypical umami substance, is used as a flavor enhancer in many foods, but when presented alone is often only weakly attractive. Yet with experience mice will develop strong preferences for MSG solution over water. The present experiments explored the conditions that change indifference to preference for MSG. C57BL/6J mice were given a series of 2-day two-bottle tests with water vs. an ascending series of MSG concentrations (0.1-450 mM) to assess preference and intake. Naive mice were indifferent to all concentrations, but following forced one-bottle exposure to 300 mM MSG they preferred most concentrations and consumed more MSG. Exposure to 100mM MSG also increased subsequent MSG preference but not intake. Experience with other nutritive solutions (8% sucrose, 8% Polycose, 8% casein hydrolysate, and isocaloric 3.5% soybean oil emulsion) also enhanced subsequent MSG preference and intake. Polycose and sucrose experience were almost as effective as MSG experience. However, not all sapid solutions were effective; 0.8% sucralose and 10mM MSG exposure did not alter subsequent MSG preference. The generality of the preexposure effect was tested by offering an ascending series (0.1-100 mM) of inosine monophosphate (IMP), another umami substance; initial indifference was converted to preference after forced exposure to 300 mM MSG. Together these results suggest that a combination of oral and post-oral effects may be responsible for the experience effect, with MSG itself the most potent stimulus. A final experiment revealed that MSG preference in naïve mice is enhanced by presenting the MSG and water drinking spouts far apart rather than side by side. Thus the preferences for umami solutions in mice are subject to influence from prior tastant experience as well spout position, which should be taken into account when studying acceptance of taste solutions in mice.